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SUMMARY 

An unfactored implicit time-marching method for the solution of the unsteady two-dimensional Reynolds- 
averaged thin layer NavierStokes equations is presented. The linear system arising from each implicit step is 
solved by the conjugate gradient squared (CGS) method with preconditioning based on an AD1 factorization. The 
time-marching procedure has been used with a fast transfinite interpolation method to regenerate the mesh at 
each time step in response to the motion of the aerofoil. The main test cases examined are from the AGARD 
aeroelastic configurations and involve aerofoils oscillating rigidly in pitch. These test cases have been used to 
investigate the effect of various parameters, such as CGS tolerance and laminar to turbulent transition location, 
on the accuracy and efficiency of the method. Comparisons with available experimental data have been made for 
these cases. In order to illustrate the application of the mesh generator and flow solver to more general flows 
where the aerofoil deforms, results for an NACA 0012 aerofoil with an oscillating trailing edge flap are also 
shown. 
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1. INTRODUCTION 

An important part of the design process for an aircraft is the demonstration that the flight envelope 
lies within the boundaries of aeroelastic stability. Owing to the cost of aeroelastic wind tunnel 
experiments, computational tools have an important role to play in this area. However, time-accurate 
simulation techniques for unsteady flow lag well behind the development of codes for steady flows, 
where convergence acceleration by multigrid, Newton iterations or a variety of other methods has 
reached an advanced stage and studies of three-dimensional flows governed by the Reynolds- 
averaged NavierStokes equations are being reported in the literature with increasing frequency. 

The basis of most aeroelastic and many unsteady aerodynamic studies has been the low-frequency 
transonic small-disturbance equations. The code LTRAN, developed by Ballhaus and Goorjian,' 
which uses an alternating direction implicit (ADI) approach to solve the equations in multiple 
dimensions, provided a major breakthrough in computational aerodynamics. 

One of the principal disadvantages of a code such as LTRAN is its inability to cope with strong 
shock waves. To model strong shocks satisfactorily, the lowest level of model required is the Euler 
equations. An early study of the unsteady Euler equations was published by Magnus and Yoshihara' 
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in 1975 based on an explicit algorithm. As computational methods have matured and computing 
facilities improved, studies of the unsteady Euler equations using both explicit and implicit methods 
haye become increasingly common. Explicit methods are simple to code and vectorize, but for many 
problems the allowable time step for stability is much smaller than that required for accuracy. For 
unsteady flows, where most of the acceleration techniques developed to speed up steady flow 
calculations cannot be used (as they destroy time accuracy), this results in a requirement for a very 
large number of time steps. Studies based on explicit schemes include those published by 
Venkatakrishnan and Jame~on,~ Kandil and Chang4 and Batina et ~ 1 . ~  Implicit schemes allow much 
larger time steps, but the work required per time step may be large, particularly in three dimensions. 
Implicit studies include unfactored methods, e.g. those of Brenneis and Eberle,6.7 and methods which 
use a Beamwarming approximate factorization, e.g. those of Guruswamy' and Guruswamy and 
Obayashi.' More recently a dual-time approach has been developed by Jameson." This uses an 
implicit real-time discretization, but at each real time step it marches the solution in pseudotime to a 
steady state through an explicit time-marching scheme. The acceleration techniques of steady flow 
calculations can be used, since the marching is in pseudotime. 

The Navier-Stokes equations have remained relatively untouched for unsteady applications despite 
the need to model fully separated and mixed separatekiltached flows. The grid density required to 
resolve the viscous flow features means that for explicit methods the stability limit leads to an 
excessively high number of time steps. Therefore most studies of the NavierStokes equations for 
unsteady flows published to date have used implicit methods. Notable calculations include the study 
of aileron buzz published by Steger and Bailey" and those by Levy and c o - w o r k e r ~ , ~ ~ * ~ ~  who studied 
shock-induced oscillations over a rigid aerofoil, and Chyu et di4 who examined the flow over a 
pitching NACA 64A010 aerofoil-a flow that has become a standard test case for Euler and Navier- 
Stokes codes. From 1990 Guruswamy and coworkers have reported results obtained with the three- 
dimensional Euler/Navier-Stokes code ENSAER0.8,99'5- l7  Applications include the aeroelastic flow 
over F-5 and delta wings. In 1990 an application of the Lockheed code ENS3D was reported to 
examine the flutter response of a wing-fuselage section. These studies are mostly based on the 
Beam-Warming approximate factorization method which utilizes central differences and artificial 
dissipation, although there is an indication that upwind methods are becoming increasingly popular. 
The dual-time approach has recently been extended to the NavierStokes equations by h o n e  
et u1.,I8 who investigated vortex shedding, shock buffeting and wake effects on a rotor blade. This 
approach is likely to be competitive with traditional implicit methods. 

There is still considerable scope for the development of new methods for the solution of the 
Navier-Stokes equations for a range of important unsteady flows, e.g. calculation of vortex-induced 
instabilities.' Owing to the intensive computing requirements for such flows, efficient numerical 
algorithms together with improved computing power are needed before calculations for three- 
dimensional geometries become routine. This paper describes current progress in the development of 
an implicit code capable of solving turbulent and aeroelastic flows. The flow solver is implemented in 
conjunction with a moving grid algorithm and is based on upwind methods and conjugate gradient 
solvers. Upwind schemes of the flux vector splitting or approximate Riemann solver type developed 
for the Euler equations led to very satisfactory ways of treating shock waves. When these methods are 
incorporated in NavierStokes codes, they allow the boundary layers to be well resolved owing to 
their low numerical dissipation. The large sparse linear system which arises for most steady and 
unsteady implicit methods must be solved efficiently. This is usually achieved by some form of 
approximate factorization which introduces an additional source of error into the solution procedure, 
with consequences for accuracy and efficiency. Despite this, the CFD manifestation of the alternating 
direction implicit (ADI) factorization, the Beam-Waxming method, has proved very popular and 
successll with its incorporation in codes such as LTRAN and ARC3D. More recently an 
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approximate LU factorization based on flux vector splitting has been successfully used. Conjugate 
gradient methods provide an efficient method for solving the exact linear system to a required 
tolerance and they have been used successfully for steady flow problems. The preconditioning 
strategy is crucial to their success and in Reference 19 the AD1 factorization was used as a 
preconditioner. This method, called AF-CGS (approximate factorization conjugate gradient squared), 
proved successful on a number of steady aerofoil test problems. A similar approach has been used in 
Reference 20 for the steady Euler equations and in Reference 21 for steady turbulent flows. Here the 
AF-CGS method is extended to unsteady turbulent flows. 

The treatment of the mesh is a major consideration for unsteady aerodynamic and aeroelastic 
analysis, where the mesh must move to conform to the instantaneous body shape. Rigid body motions 
can be modelled without mesh regeneration or adaption by moving the mesh rigidly in response to the 
motion of the body. However, this approach is no longer an option if the body deforms as in an 
aeroelastic problem or if the outer boundaries of the mesh are fixed multiblock boundaries. An 
efficient transfinite interpolation method was used in Reference 22 to regenerate the mesh at each 
time step around an aerofoil with outer boundaries which were either fixed or undergoing a prescribed 
motion. The same grid generation procedure has been used in this study. In the work described here 
the speeds of all mesh points, which are required by the flow solver, have been calculated using a 
first-order finite difference procedure, whereas in Reference 22 the velocities of mesh points were 
generated by transfinite interpolation of the speeds of the mesh points on the aerofoil surface. The 
latter method was used for aerofoils either oscillating in pitch or with oscillating trailing edge flaps. 
For the pitching cases analytic expressions were derived for the speeds of the aerofoil mesh points, 
whereas for the oscillating flap cases the speeds of the mesh points on the aerofoil were approximated 
using a first-order finite difference procedure. For general aeroelastic problems, where no analytical 
description of the aerofoil motion would be available a priori, one of the two finite difference 
approaches described above would be required. This moving mesh method has already been extended 
to 3D flows about wings.23 

Comparisons between results computed by the present method and experimental data are shown 
for pitching aerofoil flows, with the test cases being selected from the AGARD standard aeroelastic 
configurations. In addition, results from two oscillating flap problems are given and compared with 
solutions of the Euler equations calculated using the method described in Reference 23. 

2. AF-CGS METHOD 

The thin layer Reynolds-averaged NavierStokes equations in generalized curvilinear co-ordinates 
(5 ,  1) with 1 normal to the surface are given in non-dimensional form by 

where 
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r 0 1 

with 

and J the determinant of the Jacobian of the transformation x =x(<, q, t), y =y(& q, t).  Here p, u, v, 
e,  p ,  Re, c and y denote density, the two components of velocity, energy, pressure, the Prandtl 
number, the Reynolds number, the speed of sound and the (constant) ratio of the specific heats 
respectively. The viscosity p is composed of a part due to the natural viscosity of the fluid, p ~ ,  and a 
term to account for turbulence, pT. Sutherland's law is used to describe the variation in the fluid 
viscosity with temperature and the Baldwin-Lomax is used to provide a value for the 
turbulent viscosity. The transition point is generally fixed, based on either experimental practice or 
experimental observation. However, where the location of transition is not available from the 
experiment, calculations have been performed with various assumed transition points to assess the 
effect on the solutions. 

Any accurate method for computing a flow should be able to calculate steady flow without the 
presence of any bodies. If moving meshes are used, then a geometric conservation law (GCL) is 
required to prevent mass, momentum or energy being produced unphysically by the numerical 
pr~cedure?~ This GCL has a similar integral form to the mass conservation law and leads to a set of 
equations which must be solved for the cell volumes using the same integration scheme as used for 
the flow equations themselves. However, several authors, including G~ruswamy,'~ have found that 
for many test cases where the changes in cell areas at each time step are very small, the error in 
disregarding the GCL is less than other possible errors in the solution procedure. In this study the 
additional computational effort has been avoided as the GCL has not been applied. However, for 
applications of the present work this is a matter which requires further investigation. 

To solve the system of partial differential equations (l), a finite volume scheme is used. Osher's 
method is used for the convective terms and the formulation for general geometries is given in 
Reference 26. A MUSCL interpolation is used to provide second- or third-order accuracy and the Von 
Albada limiter prevents spurious oscillations from occurring around shock waves. Central 
differencing is employed for the viscous terms. Far-field boundary conditions are imposed by 
Riemann invariants and no vortex correction is applied owing to the unsteadiness of the flow. One 
implicit step can be written as 

where Rt; and R, are terms arising from the spatial discretization in the 5- and ?-direction 
respectively and 
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Here the turbulent viscosity is treated as being constant at its value at time level n in the calculation 
of aR,/&v, because a linearization of this term would lead to a large number of additional terms in 
the coefficient matrix on the left-hand side of (2). This explicit treatment of the turbulent viscosity 
was not found to compromise the stability of the implicit time stepping. The AD1 factorization of (2) 
is 

[I + A t ( 2 ) ^ ]  [I + At(2)n]Aw" = -At(R; + q). (3) 

The AD1 factorization given in (3) has been widely used because it is easier to solve than equation 
(2), as each of the factors is typically block diagonal or block pentadiagonal. However, the solution of 
the AD1 system is not an exact solution of (2) and in practice the factorization error (the term 
neglected in using equation (3) rather than equation (2)) leads to a stability limit on the time step and 
introduces another source of error into the calculation. 

An alternative approach is therefore adopted in the present work: equation (2) is solved to a 
required tolerance using a conjugate gradient method. The first major issue that arises from this 
approach is the construction of the matrix on the left-hand side of (2). Here the symbolic algebra 
package ReduceTM has been used to achieve a fully analytic evaluation of the matrix. Next a method 
is required to solve the resulting linear system which avoids factorization errors. This is achieved by 
using a conjugate gradient method to solve the exact system, with an efficient preconditioner. For 
the unsteady flows considered here the computation of the preconditioner must not be too 
computationally intensive, hence an efficient preconditioner based on an approximate factorization is 
used. This has been successfully applied for steady fluid flow problems.27328 

Conjugate gradient methods find an approximation to the solution of a linear system by minimizing 
a suitable residual error function in a iinite-dimensional space of potential solution vectors. Several 
algorithms are available, including BiCG, CGSTAB, CGS and GMRES. These methods were tested 
in Reference 27 and it was concluded that the choice of method is not as crucial as the 
preconditioning. However, the CGS method was found to be the quickest of the three methods that do 
not require reorthogonalization and is used here. It has the additional advantage that the transpose of 
A, the matrix on the left-hand side of (2) ,  is not required, which reduces implementation difficulties. 
The CGS algorithm was derived in Reference 29 and is restated in Reference 20. 

Denoting the linear system to be solved at each time step by 

A X  = b, (4) 

we seek an approximation to A-' x C-' which yields a system 

more amenable to conjugate gradient methods. The AD1 method provides a fast way of calculating an 
approximate solution to (4) or, restating this, of forming the matrix vector product 

C ' b  = X. (6) 

Hence, if we use the inverse of the AD1 factorization as the preconditioner, then multiplying a vector 
by the preconditioner can be achieved simply by solving a linear system with the right-hand side 
given by the multiplicand and the left-hand side matrix given by the approximate factorization. The 
factors in C can be put in triangular form once at each time step, with the row operations being stored 
for use at each multiplication by the preconditioner. 
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The conditioning of the system is adversely affected by increasing the time step. Therefore there is 
a conflict between reducing the overall number of time steps used to solve the problem and reducing 
the number of CGS iterations required to solve the linear system at each time step. The behaviour of 
the CGS solver has been used in the present work to adapt the time step during a calculation. First, a 
maximum time step is set according to accuracy considerations. Experience of the number of steps 
per cycle required for calculations at various frequencies guides this choice of maximum time step. 
The time step is never allowed to increase above this threshold, but it might have to be reduced to 
enhance the CGS convergence. This is achieved by cutting off the CGS solution after a preset number 
of iterations if no convergence has been achieved, reducing the time step, recalculating the matrix on 
the left-hand side of the linear system and restarting the conjugate gradient solution with a linear 
system which should prove easier to solve. In contrast, if the linear system is solved easily at one step, 
then the time step is increased for the subsequent calculation, provided that it is kept lower than the 
maximum specified from an accuracy point of view. Finally, to increase the robustness of the 
computer code, the calculation is restarted with a lower CGS convergence criterion if negative 
density or pressure is detected. 

3. MESH GENERATION 

The solution of the thin layer NavierStokes equations on a moving grid requires a new grid along 
with the resulting grid speeds at each time step. The grid generator used in this study was developed 
in Reference 22 and is based on the algebraic technique of transfinite interpolation. The procedure 
effectively interpolates grid points in the computational domain from points on the inner boundary 
(aerofoil surface) and the outer (far-field or grid block) boundary. At each time step the 
transformation is given by a vector-valued function 

where 5 and q are the parametric co-ordinates of the grid and 0 < 5 < 1, 0 < r]  < 1. The grid is 
generated by partitioning the parametric co-ordinates into uniform intervals and mapping them to the 
physical domain using the transformation 

where the functions d(q) are called blending functions. Here the blending functions described by 
Erik~son,~' which give an exponential stretching between the boundary surfaces, are used. These 
blending functions do not always give sufficient control over the grid spacing. Additional control can 
be obtained by mapping to a set of intermediate control co-ordinates and then using transfinite 
interpolation from the control domain to the physical domain. In Reference 22, where grids were 
required for the solution of the Euler equations, the parametric co-ordmates were mapped to a control 
domain via qc = qe, where the exponent e is related to the mesh spacing on the aerofoil surface. This 
results in a normal mesh spacing which is a function of the arc length around the aerofoil and allows 
the mesh to be clustered in the region of the leading and trailing edges, resulting in meshes of good 
quality for the solution of the inviscid Euler equations. This control mapping is not suitable for the 
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thin layer Navier- 
considered in this 
known hyperbolic 

Stokes equations, giving too large a stretching at the aerofoil for the problems 
paper. Therefore as an alternative the control mapping is taken to be the well- 
tangent stretching function 

with P and Q being user-specified constants. This gives satisfactory results for the test cases 
considered in this study. 

In the current application the outer boundary is assumed to be fixed. 

4. FLOW RESULTS 

4.1. Dejnition of test cases 

Results have been obtained for periodic flows. In each case a starting solution is obtained using a 
steady state version of the AF-CGS algorithm.'l The aerofoil is then set in motion impulsively and 
the calculations are continued until a periodic solution is obtained. 

The AGARD test cases31 act as standard flows for computer code evaluation and verification. In 
this paper results are presented for several of these test cases for pitching aerofoils. The motion is 
defined by the angle of attack as a function of time and the centre of rotation, n,, which is given as the 
distance along the chord as a percentage of the chord length c.  The angle of attack is defined by 

a(t) = CI, + a0 sin(kt), 

where t is the non-dimensional time, k = wc/V, and w is the dimensional frequency. 
The cases presented here are listed in Table I. The calculated solutions are compared with 

experimental data, which include detailed pressure distributions at a number of points during the 
pitching cycle as well as normal and moment coefficient values. Note that for case 4, experimental 
pressure data are only available for the upper surface of the aerofoil. 

Table I. Pitching test cases examined 

Number Aerofoil M, Re x lo6 urn UO k XC xt 

1 NACA 0012 0.60 4.8 2.89 2.41 0.1616 0.25 0.10 
2 NACA 0012 0-60 4.8 4.86 244 0.1620 0.25 0.10 
3 NACA 0012 0.755 5.5 0.016 2.51 0.1628 0.25 0.10 
4 NACA 64A010 0.796 12.56 0 1.0 0.4080 0.248 0.05 

Table 11. Flap test cases examined 

Number Aerofoil M, Re x lo6 U 60  k xt 

5 NACA 0012 0.80 4.8 0.0 0.5 0.4000 0.10 
6 NACA 0012 0.80 4.8 0.0 5.0 0.4000 0.10 
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The above cases 1 4  are all for rigid body motions. In order to demonstrate that the mesh generator 
can be applied to deforming aerofoils, theoretical test cases for an NACA 0012 aerofoil with an 
oscillating trailing edge flap have been considered as in Reference 22. The flap hinge lies on the upper 
surface of the aerofoil at x/c=O.75. The flap defleotion angle 6 is then given by 

1 - cos(kt) 
2 .  

6 = 60 

Two test cases were considered and these are listed in Table 11. 

4.2. Results 

First consider results for the AGARD test cases. Comprehensive experimental data are available 
for these cases and they have therefore been widely used to check new unsteady methods. 

For case 1 the qualitative behaviour of the shock wave which forms on the upward part of the 
motion* is well predicted; see Figure 1, where solutions on 77 x 30 and 137 x 30 meshes are shown. 
However, the shock strength is underpredicted and the location is upstream of experiment. The 
pressure distributions compare less favourably with experiment than the Euler results of References 3 
and 22. The results for this case are very sensitive to the location of the transition point, see Figure 2, 
which suggests that the turbulence model is largely to blame for this. No improvement in the results 
was noted by mesh refinement in the streamwise or normal directions or by increasing the number of 
time steps taken per cycle, further suggesting that errors in the solution can be attributed to the 
turbulence model. The normal force coefficient agrees well with experimental data and the moment 
coefficient agrees well taken about 0.273 of the chord as in Reference 22 instead of the quarter-chord 
as quoted for the experimental results; see Figure 10. 

Case 2 is well predicted, with good resolution of the shock wave; see Figure 4, where solutions are 
shown for 77 x 30 and 137 x 30 meshes. The shock strength is slightly underpredicted compared 
with experiment and is located slightly upstream of the experimental position, but the agreement is 
much closer than for case 1. No improvement in the results is noted with mesh refinement. The 
computed normal force coefficient variation is very close to that of the experimental values, but some 
disagreement is noted for the moment coefficient; see Figure 1 1. However, given the doubt over the 
exact location of the moment centre for case 1 (which is part of the same set of experiments) and the 
good prediction of the pressure distribution throughout the pitching cycle, the experimental values are 
in doubt. 

For case 3, mesh refinement from 77 x 30 to 157 x 40 produces significantly improved shock 
resolution, with the pressure distribution on the finer mesh closely following the experimental 
behaviour; see Figure 5. The results are also consistent with the Navier-Stokes results given in 
Reference 32, which located the shock wave slightly upstream of experiment. The comparison of the 
moment and normal force coefficients in Figure 12 also follows that given in Reference 32. Poor 
agreement was noted therein for the viscous results compared with inviscid results and it was argued 
that the corrected angle of attack should be higher and that when the inviscid solutions located the 
shock wave downstream of the actual position for the computational conditions, this is closer to the 
position for the actual experimental conditions. It was also noted that the phase of the inviscid and 
viscous calculations was identical and hence that inviscid results would be sufficient for aeroelastic 
calculations at similar flow conditions. 

* In this subsection the aerofoil motion is described in terms of the movement of the nose, i.e. the upward motion denotes the 
case where ct is increasing. 
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Mesh refinement from 77 x 30 to 157 x 40 again gave closer agreement with experiment for case 
4, with the shock wave resolution again being significantly improved; see Figure 6. Close agreement 
with experiment for the normal force is noted, see Figure 13, although a periodic solution has yet to 
be established. Similar discrepancies with experiment for the moment coefficient are observed as for 
the Euler solutions in References 3 and 22, suggesting that the integration of the pressure values is in 
error for the experimental results. 

The thin layer NavierStokes code has produced good results for the above AGARD test cases. 
However, they represent mainly attached flows and therefore do not represent a serious challenge for 
the thin layer NavierStokes code. 

In addition, the above test cases could all have been treated by rigidly rotating the mesh with the 
aerofoil. To demonstrate the generality of the mesh regeneration approach, a theoretical problem of 
an NACA 0012 aerofoil with oscillating trailing edge flap was considered. The results from the thin 
layer Navier-Stokes solver were compared with those available from a Euler solver to assess viscous 
effects. The Euler solver was a dual-time method with four-stage Runge-Kutta time stepping.23 

Test case 5 has a small maximum flap deflection angle of do = 0.5". The instantaneous pressure 
distributions from the Euler (109 x 30 grid) and thin layer NavierStokes (129 x 40 grid) 
calculations at 6 = 0", 0.25"?, 0.5" and 0-25'4 during the third cycle of motion are shown in Figure 7. 
The distributions are essentially very similar, with just a small difference in shock location, indicating 
that viscous effects are small and that the flow is attached. This is confirmed by examination of the 
flow field. Mesh refinement did not produce any change in the results. 

Test case 6 has a much larger maximum flap deflection angle do = 5". Thin layer NavierStokes 
calculations were performed on 129 x 40 and 175 x 60 meshes. Mesh refinement did produce some 
differences in the pressure distributions. The fine grid distributions are shown in Figure 8 for 6 = O", 
2.5"?, 5" and 2.5'4, again on the third cycle of motion. Euler solutions are also shown for a 129 x 30 
grid and in this case the pressure distributions exhibit differences from the thin layer NavierStokes 
solutions. The flow is dominated by a strong shock wave that develops on the lower surface of the 
aerofoil in the vicinity of the comer formed by the flap. When the flap is undeflected, the shock lies 
upstream of the 'flap corner', and as the flap deflects upwards, the shock decreases in strength and 
moves towards the leading edge. As the flap returns to its undeflected position, the shock strength 
increases, and at 6 = 2.5" the shock has moved far enough back to lie just further aft than the 'flap 
corner'. Examination of the shear stress (non-dimensionalized by p,V&) shows evidence of flow 
separation; see Figure 9. For 6 = 0", 2.5"T and 5" the shear stress indicates only a small region of 
separation, whereas the 6 = 2.5'4 shear stress indicates that the flow over most of the lower surface of 
the flap is separated. Note that this is predicted by both the 129 x 40 and 175 x 60 meshes. This is 
c o n k e d  by examination of velocity vectors in cells adjacent to the body surface. The reversed flow 
is captured over between eight and 16 cells in the ?-direction on the 175 x 60 grid. 

This last test case does exhibit viscous effects, as confirmed by comparisons with a Euler solution. 
However, the region of separation is very small. Further tests are required to establish the ability of 
the code to deal with large-scale separation, with particular attention paid to the turbulence model. As 
yet it has not been possible to determine a suitable test case which exhibits large-scale separation and 
for which experimental data are available. 

5.  EFFECT OF NUMERICAL PARAMETERS 

The main numerical parameters of the method are the time step, the limiter details, the CGS 
tolerance, the transition point, the precision with which the computer code is implemented and the 
mesh density. The time step affects the efficiency of the CGS solution as well as the accuracy of 
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the flow solution as discussed in Section 2. In general, the smaller the time step, the easier 
the linear system is to solve at each time step at the cost of an increased number of steps in the 
thin layer NavierStokes solution. For the results of this paper the maximum number of CGS steps 
was set at 20. The CGS residual value at which the time step is increased if this has been achieved 
after one iteration was set at one-tenth of the CGS tolerance. The number of steps per cycle is 
either increased or decreased by 50 according to whether or not either of these conditions has been 
met. 

The number of time steps required to compute one cycle of each of the AGARD test cases is shown 
in Table I11 for various meshes and for single- and double-precision versions of the code. Case 2 
proved the most difficult for the CGS solver, with stronger shock waves present than for the other 
cases. Case 2 was also solved using no flux limiter and the results are shown in Figure 3. It is clear 
from the figure that the solution obtained with no limiter is very close to that obtained by using one, 
except for small oscillations around the shock wave. It is also clear from Table I11 that the unlimited 
case is much easier to solve, requiring fewer time steps per cycle. However, from the point of view of 
eliminating spurious solution modes, the limiter should be used where this does not lead to 
unacceptably high run times. In Reference 32, 15,000 time steps were required to solve one cycle of 
case 3, and in Reference 33, 2600 steps per cycle were needed for case 4, both studies used the 
Beam-Warming factorization. This is an order of magnitude greater than the number required in the 
present work. The most costly part of the present method is the Jacobian calculation and an implicit 
step using an AD1 solution is only 15 per cent cheaper than one based on CGS. Hence the present 
results would represent a substantial reduction in CPU time based on the quoted number of time steps 
given above. A time step refinement study for case 4 showed that the results obtained for the number 
of steps per cycle is shown in Table I11 have converged with respect to the time step. This indcates 
that the time step is still restricted by some factor other than accuracy, in this case CGS convergence. 
However, the restriction is much less severe than for ADI. 

The location of the transition point was found to have a significant effect on the results for case 1. 
Transition was free in the experiments, but the location for the computation has to be fixed as part of 
the simulation. Three different points were tried at 0.05, 0.1 and 0.15 and the results are shown in 
Figure 2. It is clear that fixing the point at 0.1 or 0.15 gives much better shock wave resolution 
compared with the case where transition is at 0.05. However, there is no rational justification for 
fixing the transition point in this manner and this is one of several weaknesses of the BaldwiwLomax 
model which is a problem common to all turbulence models. The results for the other cases were not 
found to be as sensitive to the location of transition as case 1 is. 

The effect of the precision of arithmetic on conjugate gradient methods is well known. Rounding 
errors can significantly reduce the convergence rate. This is seen in Table 111, where the number of 
steps required by the double-precision version is always less than or equal to the number required by 
the single-precision case, since the double-precision code can sometimes solve the linear system in a 
fixed number of steps when no convergence is achieved for the single-precision case. However, the 
double-precision code requires more memory and CPU time per step and in general the decrease in 
the number of time steps is not great enough to offset these disadvantages. Nevertheless, for 
particularly complicated flows the double-precision version might prove significantly more efficient. 

The CGS tolerance is a crucial parameter since it determines the stability of the time-stepping 
scheme. For all the cases considered the tolerance was set at one-tenth of the residual corresponding 
to the solution obtained by approximate factorization. The only cases which subsequently suffered 
negative density or pressure were cases 1 and 2 and these were successfully solved after the solution 
was reset and the tolerance was halved to one-twentieth. The automatic resetting procedure provides 
a convenient way to quickly decide on a suitable CGS tolerance for an unfamiliar class of problems 
and adds to the robustness of the code. 
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Finally, we examine the effect of mesh refinement. The performance of conjugate gradient 
methods in general is degraded as the size of the system increases. This feature is clear from the 
results in Table 111, where it is shown that smaller time steps are required on finer meshes for the 
linear solver to converge within the specified number of iterations. This feature is undesirable, but the 
degradation is not prohibitively large for the test cases examined herein. 

6. CONCLUSIONS 

An unfactored implicit method for the Reynolds-averaged thin layer Navier-Stokes equations on 
moving meshes has been developed. Provisional comparisons of the method with approximately 
factored methods, which are widely used for viscous flow problems, are favourable. The ability to 
control, through the conjugate gradient tolerance, the error incurred in the solution of the linear 
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I 

Figure 5. (continued) 

system at each time step allows larger time steps to be taken compared with approximately factored 
methods. Further work is required to evaluate the AF-CGS method against a well-developed 
approximate factorization method. 

The incorporation of a general moving mesh method based on transfinite interpolation has 
improved the generality of the unsteady AF-CGS code. The outer boundary of the grid pursues a 
motion which is independent of the component it surrounds (here the outer boundary is fixed), which 
provides several benefits. First, the method is applicable to aerolastic calculations, whereas previous 
versions of AF-CGS were restricted to rigid body flow calculations. Second, the present scheme could 
be incorporated easily into a multiblock method, which is popular for computing flows about 
complex configurations. The transfinite interpolation procedure was initially developed for Euler 
calculations and good interpolation functions and grid parameters have been identified for this 
application. This procedure was adapted for this study to generate grids for the NavierStokes 
calculations by using the well-known hyperbolic tangent stretching function and more work is 
required to assess and optimize the grid quality for viscous applications. There is also scope for the 
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Figure 9. Shear stress 7* versus x /c  for case 6: 6 (deg) =(a) 0, (b) 2.5, (c) 5,  (4 2.5 

development of a solution-adaptive version of the grid generation scheme, which might enhance the 
current method. 

The method was verified for several AGARD test cases; satisfactory agreement was noted with 
both experiment and previous computations. These cases represent attached flow and so are not in 
general representative of the flow problems which need to be studied by solving the thin layer 
NavierStokes equations. The oscillating flap test case with 60 = 5" shows evidence of a very small 
region of separated flow and has significantly different pressure distributions from those of a Euler 
code, which indicates that viscous effects play a role in this case. It is anticipated that in cases with 
more significant regions of separated flow the main problems will be associated with the turbulence 
model and not with the solution algorithm. 
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Table 111. Number of time steps required to compute one cycle 

Case Mesh Limiter CGS tolerance Single precision Double precision 

1 77 x 30 No 0.05 796 - 

137 x 30 No 0.05 1208 - 
77 x 60 No 0.05 1094 - 

2 77 x 30 Yes 0.05 1980 1334 
77 x 30 No 0.05 1178 922 

137 x 30 Yes 0.05 4660 2345 
137 x 30 No 0.05 1713 1299 

3 77 x 30 Yes 0.1 569 464 
157 x 40 Yes 0.1 79 1 656 

4 77 x 30 Yes 0.1 178 150 
157 x 40 Yes 0.1 418 320 

Work is currently in progress to couple the flow code to a structural model to study the aeroelastic 
response of an aerofoil. The extension of the method to 3D wing calculations is currently underway. 
The straight generalization of the method is unpromising owing to the poor quality of the AD1 
factorization and to the large memory requirements in 3D. To overcome these problems, a two-factor 
method has been developed which has one block diagonal factor and one factor of a more 
complicated sparsity pattern which is solved by the approach described in this paper. Preliminary 
results have been promising. 

ACKNOWLEDGEMENTS 

K.J.B. is funded under SERC/MOD contract GR H 47371. A.L.G. is a Lloyds of London 
Tercentenary Foundation Research Fellow. 

REFERENCES 

1. W. F. Ballhaus and P. M. Goorjian, ‘Implicit finite-difference computations of unsteady transonic flows about aerofoils’, 

2. R. Magnus and H. Yoshihara, ‘Unsteady transonic flows over an aerofoil’, AIM J., 13, 1622-1628 (1975). 
3. V. Venkatakrishnan and A. Jameson, ‘Computation of unsteady transonic flows by the solution of the Euler equations’, 

4. 0. A. Kandil and H. A. Chang, ‘Computation of steady and unsteady vortex-dominated flows with shock waves’, AIM J., 

5 .  J. T. Batina, E. M. Lee, W. L. Kleb and R. D. Rausch, ‘Unstructured- grid methods development for unsteady aerodynamic 

6. A. Brenneis and A. Eberle, ‘Evaluation of an unsteady implicit Euler code against two and three-dimensional standard 

7. A. Brenneis and A. Eberle, ‘Application of an implicit relaxation method solving the Euler equations for time-accurate 

8. G. P. Guruswamy, ‘Unsteady aerodynamic and aeroelastic calculations for wings using Euler equations’, AIM J., 28,461- 

9. G. P. Guruswamy and S. Obayashi, ‘Transonic aeroelastic computations on wings using NavierStokes equations’, in 

10. A. Jameson, ‘Time dependent calculations using multigrid with applications to unsteady flows past aerofoils and wings’, 

11. J. L. Steger and H. E. Bailey, ‘Calculation of transonic aileron buzz’, AIAA J., 18, 249-255 (1980). 
12. L. L. Levy, ‘Experimental and computational steady and unsteady transonic flows about a thick aerofoil’, AIM J., 16,564- 

AIAA J., 15, 1728-1735 (1977). 

AIAA J., 26,974-981 (1988). 

26, 524- 531 (1988). 

and aeroelastic analyses’, in Transonic Unsteady Aerodynamics and Aeroelasticity, AGARD, 1991. 

configurations’, in Transonic Unsteady Aerodynamics and Aeroelasticity, AGARD, 1991. pp 10.1-10.150. 

unsteady problems’, J. Fluids Eng., 112, 510-520 (1990). 

469 (1990). 

Transonic Unsteady Aerodynamics and Aeroelasticity, AGARD, 1991. 

AIAA Paper 91-1596, 1991. 

572 (1978). 



UNFACTORED IMPLICIT MOVING MESH METHOD 63 1 

13. J. B. McDevitt, L. L. Levy and G. S. Deiwert, ‘Transonic flow about a thick circular-arc aerofoil’, AZAA J., 14, 606613 

14. W. J. Chyu, S. S. Davis and K. S. Chang, ‘Calculation of unsteady transonic flow over an aerofoil’, AZAA J., 19, 684-690 

15. N. M. Chadejian and G. P. Guruswamy, ‘Transonic NavierStokes computations for an oscillating wing using zonal 

16. G. P. Guruswamy, ‘NavierStokes computations on swept-tapered wings, including flexibility’, J. Aircraj?, 29, 58%597 

17. S. Obayashi, G. P. Guruswamy and P. M. Goorjian, ‘Streamwise upwind algorithm for computing unsteady transonic flows 

18. A. Amone, M.4. Liou and L. A. Povinelli, ‘Multigrid time-accurate integration of NavierStokes equations’, AZAA Paper 

19. K. J. Badcock, ‘An efficient unfactored implicit method for unsteady aerofoil flows’, GUAero Rep. 9313, 1993. 
20. M. Vitaletti, ‘Solver for unfactored schemes’, AZAA J. ,  29, 1003-1005 (1991). 
21. K. J. Badcock, I. C. Glover and B. E. Richards, ‘A preconditioner for steady two-dimensional turbulent flow simulation’, 

22. A. L. Gaitonde and S. P. Fiddes, ‘A moving mesh system for the calculation of unsteady flows’, AZAA Paper 93-0641, 

23. A. L. Gaitonde, ‘A dual-time method for the solution of the unsteady Euler equations’, Aeronaut. J . ,  98,28>291 (1994). 
24. B. S. Baldwin and H. Lomax, ‘Thin layer approximation and algebraic model for separated turbulent flow’, AZAA Paper 

25. P. D. Thomas and C. K. Lombard, ‘Geometric conservation law and its application to flow computations on moving grids’, 

26. S. Osher and S. R. Chakravaithy, ‘Upwind schemes and boundary conditions with applications to Eder equations in 

27. K. J. Badcock, ‘Newton’s method for laminar aerofoil flows’, GU Aero Rep. 9310, 1993. 
28. V. Venkatakrishnan, ‘Preconditioned conjugate gradient methods for the compressible NavierStokes equations’, AZAA J., 

29. P. Sonneveld, ‘CGS: a fast Lanczos-type solver for nonsymmetric linear systems’, SZAM J. Stat. Comput., 10, 36-52 

30. LE. Eriksson, ‘Generation of boundary-conforming grids around wing- -body configurations using transfinite 

31. AGARD, ‘Compendium of unsteady aerodynamic measurements’, Tech. Rep. 702, 1982. 
32. M. P. Thomadakis and S. Tsangaris, ‘On the prediction of transonic unsteady flows using second order time accuracy’, in 

Computational Fluid Dynamics ’92, 1992. Elsevier pp 71 1-718 edited C Hirzch et al. 
33. W. J. Chyu and S. S. Davis, ‘Numerical studies of unsteady transonic flow over an oscillating aerofoil’, in Transonic 

Unsteady Aerodynamics and Its Aeroelustic Applications, AGARD, 1984. pp 3.1-3.21. 

(1976). 

(1981). 

grids’, J. Aircraj?, 29, 326-335 (1992). 

(1992). 

past oscillating Wings’, AZAA J., 29, 1668-1677 (1991). 

93-3361, 1993. 

Znt. J. Numer. Methods Heat Transfer Fluid Flow, in press (1996). Vo16 pp 79-93. 

1993. 

78-257, 1978. 

AZAA J., 17, 1030-1037 (1979). 

general coordinates’, J. Comput. Phys., 50,447-481 (1983). 

29, 1092-1100 (1990). 

(1989). 

interpolation’, AZAA J., 20, 1313-1320 (1982). 




